Novel Real Time Polymerase Chain Reaction Approach for Rapid Detection of the Residual Escherichia coli Genomic DNA in Biopharmaceutical Products Establishment of Real Time Polymerase Chain Reaction to Detect Residual gDNA

Creative Commons License
Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Novel Real Time Polymerase Chain Reaction Approach for Rapid Detection of the Residual Escherichia coli Genomic DNA in Biopharmaceutical Products Establishment of Real Time Polymerase Chain Reaction to Detect Residual gDNA

Taghi Naserpour Farivar 1 , 2
Babak Mamnoon 1
Mohsen Karimi Arzenani 3
Dariush Ilghari 2 , *

Authors Information

1 Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, IR Iran
2 Department of Clinical Biochemistry and Genetics, Qazvin University of Medical Sciences, Qazvin, IR Iran
3 Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, IR Iran
Article information
  • Biotechnology and Health Sciences: November 01, 2014, 1 (3); e26375
  • Published Online: November 28, 2014
  • Article Type: Research Article
  • Received: October 24, 2014
  • Accepted: October 24, 2014
  • DOI: 10.17795/bhs-26375

To Cite: Naserpour Farivar T, Mamnoon B, Karimi Arzenani M, Ilghari D. Novel Real Time Polymerase Chain Reaction Approach for Rapid Detection of the Residual Escherichia coli Genomic DNA in Biopharmaceutical Products Establishment of Real Time Polymerase Chain Reaction to Detect Residual gDNA, Biotech Health Sci. 2014 ;1(3):e26375. doi: 10.17795/bhs-26375.

Copyright © 2014, Qazvin University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, et al. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J. 2010; 8(6): 719-33[DOI][PubMed]
  • 2. Swiech K, Picanco-Castro V, Covas DT. Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif. 2012; 84(1): 147-53[DOI][PubMed]
  • 3. Baneyx F. Recombinant protein expression in< i> Escherichia coli</i>. Curr Opin Biotechnol. 1999; 10(5): 411-21[DOI]
  • 4. Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol. 2005; 67(3): 289-98[DOI][PubMed]
  • 5. Swartz JR. Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol. 2001; 12(2): 195-201[PubMed]
  • 6. Lahijani R, Duhon M, Lusby E, Betita H, Marquet M. Quantitation of host cell DNA contaminate in pharmaceutical-grade plasmid DNA using competitive polymerase chain reaction and enzyme-linked immunosorbent assay. Hum Gene Ther. 1998; 9(8): 1173-80[DOI][PubMed]
  • 7. Walsh G. Proteins: Biochemistry and Biotechnology. 2002; : 205-6
  • 8. Rathore AS, Sobacke SE, Kocot TJ, Morgan DR, Dufield RL, Mozier NM. Analysis for residual host cell proteins and DNA in process streams of a recombinant protein product expressed in Escherichia coli cells. J Pharm Biomed Anal. 2003; 32(6): 1199-211[PubMed]
  • 9. Riggin A, Luu VT, Lobdell JK, Wind MK. A non-isotopic probe-hybridization assay for residual DNA in biopharmaceuticals. J Pharm Biomed Anal. 1997; 16(4): 561-72[PubMed]
  • 10. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006; 27(2-3): 95-125[DOI][PubMed]
  • 11. de Wit C, Fautz C, Xu Y. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture. Biologicals. 2000; 28(3): 137-48[DOI][PubMed]
  • 12. Wolf JJ, Wang L, Wang F. Application of PCR technology in vaccine product development. Expert Rev Vaccines. 2007; 6(4): 547-58[DOI][PubMed]
  • 13. Jeong HS, Shin JH, Park YN, Choi JY, Kim YL, Kim BG, et al. Development of real-time RT-PCR for evaluation of JEV clearance during purification of HPV type 16 L1 virus-like particles. Biologicals. 2003; 31(3): 223-9[PubMed]
  • 14. Martins SA, Prazeres DM, Cabral JM, Monteiro GA. Comparison of real-time polymerase chain reaction and hybridization assays for the detection of Escherichia coli genomic DNA in process samples and pharmaceutical-grade plasmid DNA products. Anal Biochem. 2003; 322(1): 127-9[DOI][PubMed]
  • 15. Mohammadi T, Savelkoul PH, Pietersz RN, Reesink HW. Applications of real-time PCR in the screening of platelet concentrates for bacterial contamination. Expert Rev Mol Diagn. 2006; 6(6): 865-72[DOI][PubMed]
  • 16. Mahmoudi S, Abtahi H, Bahador A, Mosayebi G, Salmanian AH. Production of recombinant streptokinase in E. coli and reactivity with immunized mice. Pak J Biol Sci. 2010; 13(8): 380-4[PubMed]
  • 17. Babaeipour V, Shojaosadati SA, Maghsoudi N. Maximizing Production of Human Interferon-gamma in HCDC of Recombinant E. coli. Iran J Pharm Res. 2013; 12(3): 563-72[PubMed]
  • 18. Karimi Z, Babashamsi M, Asgarani E, Niakan M, Salimi A. Fermentation, fractionation and purification of streptokinase by chemical reduction method. Iran J Microbiol. 2011; 3(1): 42-6[PubMed]
  • 19. Fensterl V, Sen GC. Interferons and viral infections. Biofactors. 2009; 35(1): 14-20[DOI][PubMed]
  • 20. Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008; 8(7): 559-68[DOI][PubMed]
  • 21. Wang KY, Guo YJ, Sun SH, Shi K, Zhang S, Wang KH, et al. 16S rRNA gene probe quantitates residual host cell DNA in pharmaceutical-grade plasmid DNA. Vaccine. 2006; 24(14): 2656-61[DOI][PubMed]
  • 22. Tatalick LM, Gerard CJ, Takeya R, Price DN, Thorne BA, Wyatt LM, et al. Safety characterization of HeLa-based cell substrates used in the manufacture of a recombinant adeno-associated virus-HIV vaccine. Vaccine. 2005; 23(20): 2628-38[DOI][PubMed]
  • 23. Wolter T, Richter A. Assays for controlling host-cell impurities in biopharmaceuticals. Bioprocess Int. 2005; 3(2): 40-6
  • 24. Ji X, Lee K, DiPaolo B. High-sensitivity hybridization assay for quantitation of residual E. coli DNA. Biotechniques. 2002; 32(5): 1162-7[PubMed]
  • 25. Gregory CA, Rigg GP, Illidge CM, Matthews RC. Quantification of Escherichia coli genomic DNA contamination in recombinant protein preparations by polymerase chain reaction and affinity-based collection. Anal Biochem. 2001; 296(1): 114-21[DOI][PubMed]
  • 26. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997; 63(10): 3741-51[PubMed]
  • 27. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981; 148(2): 107-27[PubMed]
  • 28. Singh J, Batish VK, Grover S. A scorpion probe-based real-time PCR assay for detection of E. coli O157:H7 in dairy products. Foodborne Pathog Dis. 2009; 6(3): 395-400[DOI][PubMed]
  • 29. Wang Y, Li Y, Yang C, Hui L, Han Q, Ma L, et al. Development and application of a universal Taqman real-time PCR for quantitation of duck hepatitis B virus DNA. J Virol Methods. 2013; 191(1): 41-7[DOI][PubMed]