Kinetic, Thermodynamic and Structural Studies of Native and N-Bromosuccinimide-Modified Mushroom Tyrosinase

Saeed Emami 1 and
Nematollah Gheibi 2 , *

Authors Information

1 Department of Biology, Faculty of Basic Sciences, Islamic Azad University Science and Research Branch, Tehran, Iran
2 Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
Article information
  • Biotechnology and Health Sciences: February 2017, 4 (1); e13424
  • Published Online: October 16, 2016
  • Article Type: Research Article
  • Received: June 23, 2016
  • Revised: August 21, 2016
  • Accepted: September 22, 2016
  • DOI: 10.17795/bhs-40191

To Cite: Emami S, Gheibi N. Kinetic, Thermodynamic and Structural Studies of Native and N-Bromosuccinimide-Modified Mushroom Tyrosinase, Biotech Health Sci. 2017 ;4(1):e13424. doi: 10.17795/bhs-40191.

Abstract
Copyright: Copyright © 2017, Biotechnology and Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Robb D. In Copper Proteins and Copper Enzymes. Boca Raton. 1984;
  • 2. Lerch K. Neurospora tyrosinase: structural, spectroscopic and catalytic properties. Mol Cell Biochem. 1983; 52(2): 125-38[PubMed]
  • 3. Jolivet S, Arpin N, Wichers HJ, Pellon G. Agaricus bisporus browning: a review. Mycol Res. 1998; 102(12): 1459-83
  • 4. Ismaya WT, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, et al. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry. 2011; 50(24): 5477-86[DOI][PubMed]
  • 5. Ismaya WT, Rozeboom HJ, Schurink M, Boeriu CG, Wichers H, Dijkstra BW. Crystallization and preliminary X-ray crystallographic analysis of tyrosinase from the mushroom Agaricus bisporus. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011; 67: 575-87[DOI][PubMed]
  • 6. Wichers HJ, Recourt K, Hendriks M, Ebbelaar CE, Biancone G, Hoeberichts FA, et al. Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl Microbiol Biotechnol. 2003; 61(4): 336-41[DOI][PubMed]
  • 7. Wu J, Chen H, Gao J, Liu X, Cheng W, Ma X. Cloning, characterization and expression of two new polyphenol oxidase cDNAs from Agaricus bisporus. Biotechnol Lett. 2010; 32(10): 1439-47[DOI][PubMed]
  • 8. Glazer AN, Delange RJ, Sigman DS. Chemical modification of proteins. 1975;
  • 9. De la Mata I, Obregón V, Ramón F, Castillón MP, Acebal C. Chemical modification of tryptophan residues of D-amino acid oxidase from Rhodotorula gracilis. J Mol Catal B: Enzym. 2000; 9(1): 65-73
  • 10. Brush GS, Bessman MJ. Chemical modification of bacteriophage T4 deoxynucleotide kinase. Evidence of a single catalytic region. J Biologic Chem. 1993; 268(3): 1603-9
  • 11. Xie XL, Du J, Huang QS, Shi Y, Chen QX. Inhibitory kinetics of bromacetic acid on beta-N-acetyl-D-glucosaminidase from prawn (Penaeus vannamei). Int J Biol Macromol. 2007; 41(3): 308-13[DOI][PubMed]
  • 12. Chen Q. Studies on the essential groups of the alkaline phosphatase from Ostrea cucullate. J-Xiamen Univ Natural Sci. 2004; 43(5): 702-5
  • 13. Patthy L, Smith EL. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues. J Biol Chem. 1975; 250(2): 557-64[PubMed]
  • 14. Guo L, Lu ZR, Park D, Oh SH, Shi L, Park SJ, et al. The effect of histidine residue modification on tyrosinase activity and conformation: inhibition kinetics and computational prediction. J Biomol Struct Dyn. 2008; 26(3): 395-402[DOI][PubMed]
  • 15. Ko JA, Nam SH, Kim D, Lee JH, Kim YM. Identification of Catalytic Amino Acid Residues by Chemical Modification in Dextranase. J Microbiol Biotechnol. 2016; 26(5): 837-45[DOI][PubMed]
  • 16. Jawaid S, Khan TH, Osborn HM, Williams NA. Tyrosinase activated melanoma prodrugs. Anticancer Agents Med Chem. 2009; 9(7): 717-27[PubMed]
  • 17. Gheibi N, Saboury AA, Haghbeen K, Moosavi-Movahedi AA. The effect of some osmolytes on the activity and stability of mushroom tyrosinase. J Biosci. 2006; 31(3): 355-62[PubMed]
  • 18. Gheibi N, Saboury AA, Haghbeen K. Substrate Construes the Copper and Nickel Ions Impacts on the mushroom tyrosinase activities. Bull Korean Chem Soc. 2006; 25(5): 642-8
  • 19. Gheibi N, Saboury AA, Haghbeen K, Moosavi-Movahedi AA. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates. Colloids Surf B Biointerfaces. 2005; 45(2): 104-7[DOI][PubMed]
  • 20. Lakowicz JR. Principles of fluorescence microscopy. 1999;
  • 21. Schmittschmitt JP, Scholtz JM. The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci. 2003; 12(10): 2374-8[DOI][PubMed]
  • 22. Spande TF, Witkop B. [58] Determination of the tryptophan content of proteins with N-bromosuccinimide. Methods Enzymol. 1967; 11: 498-506
  • 23. Sartin JL, Hugli TE, Liao TH. Reactivity of the tryptophan residues in bovine pancreatic deoxyribonuclease with N-bromosuccinimide. J Biolog Chem. 1980; 255(18): 8633-7
  • 24. Bandivadekar KR, Deshpande VV. Structure-function relationship of xylanase: fluorimetric analysis of the tryptophan environment. Biochem J. 1996; 315 ( Pt 2): 583-7[PubMed]
  • 25. Bourguignon-Bellefroid C, Wilkin JM, Joris B, Aplin RT, Houssier C, Prendergast FG, et al. Importance of the two tryptophan residues in the Streptomyces R61 exocellular DD-peptidase. Biochem J. 1992; 282 ( Pt 2): 361-7[PubMed]
  • 26. Ali MS, Shenoy BC, Eswaran D, Andersson LA, Roche TE, Patel MS. Identification of the tryptophan residue in the thiamin pyrophosphate binding site of mammalian pyruvate dehydrogenase. J Biologic Chem. 1995; 270(9): 4570-4
  • 27. Yu Y, Li R, Xu C, Ruan K, Shen Y. N‐Bromosuccinimide modification of tryptophan 241 at the C‐terminus of the manganese stabilizing protein of plant photosystem II influences its structure and function. Physiologia Plantarum. 2001; 111(1): 108-15
  • 28. Rachadech W, Nimpiboon P, Naumthong W, Nakapong S, Krusong K, Pongsawasdi P. Identification of essential tryptophan in amylomaltase from Corynebacterium glutamicum. Int J Biol Macromol. 2015; 76: 230-5[DOI][PubMed]
  • 29. Gheibi N, Taherkhani N, Ahmadi A, Haghbeen K, Ilghari D. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase. Iran J Basic Med Sci. 2015; 18(2): 122-9[PubMed]
  • 30. Hirasawa M, Nakayama M, Kim SK, Hase T, Knaff DB. Chemical modification studies of tryptophan, arginine and lysine residues in maize chloroplast ferredoxin:sulfite oxidoreductase. Photosynth Res. 2005; 86(3): 325-36[DOI][PubMed]
  • 31. Wen Y, Li C, Fang Z, Zhuang S, Liu W. Elucidation of the enantioselective enzymatic hydrolysis of chiral herbicide dichlorprop methyl by chemical modification. J Agric Food Chem. 2011; 59(5): 1924-30[DOI][PubMed]