Kinesin-1 Traffic Control in Neuronal Highway

Kinesin-1 Traffic Control in Neuronal Highway


Masoud Rahmati 1 , *

Author Information

1 Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Lorestan University, Khorramabad, IR Iran
Article information
  • Biotechnology and Health Sciences: May 01, 2016, 3 (2); e35914
  • Published Online: May 29, 2016
  • Article Type: Review Article
  • Received: December 30, 2015
  • Revised: April 11, 2016
  • Accepted: April 23, 2016
  • DOI: 10.17795/bhs-35914

To Cite: Rahmati M. Kinesin-1 Traffic Control in Neuronal Highway, Biotech Health Sci. 2016 ;3(2):e35914. doi: 10.17795/bhs-35914.

Abstract
Copyright © 2016, Qazvin University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
References
  • 1. Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009; 10(10): 682-96[DOI][PubMed]
  • 2. Millecamps S, Julien JP. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 2013; 14(3): 161-76[DOI][PubMed]
  • 3. Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev. 2008; 88(3): 1089-118[DOI][PubMed]
  • 4. Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985; 42(1): 39-50[PubMed]
  • 5. Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol. 2009; 10(11): 765-77[DOI][PubMed]
  • 6. Seeger MA, Rice SE. Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules. J Biol Chem. 2010; 285(11): 8155-62[DOI][PubMed]
  • 7. Yan J, Chao DL, Toba S, Koyasako K, Yasunaga T, Hirotsune S, et al. Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. Elife. 2013; 2[DOI][PubMed]
  • 8. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. A standardized kinesin nomenclature. J Cell Biol. 2004; 167(1): 19-22[DOI][PubMed]
  • 9. Hagiwara H, Yorifuji H, Sato-Yoshitake R, Hirokawa N. Competition between motor molecules (kinesin and cytoplasmic dynein) and fibrous microtubule-associated proteins in binding to microtubules. J Biol Chem. 1994; 269(5): 3581-9[PubMed]
  • 10. Tokuraku K, Noguchi TQ, Nishie M, Matsushima K, Kotani S. An isoform of microtubule-associated protein 4 inhibits kinesin-driven microtubule gliding. J Biochem. 2007; 141(4): 585-91[DOI][PubMed]
  • 11. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol. 1998; 143(3): 777-94[PubMed]
  • 12. Obulesu M, Venu R, Somashekhar R. Tau mediated neurodegeneration: an insight into Alzheimer’s disease pathology. Neurochem Res. 2011; 36(8): 1329-35[DOI][PubMed]
  • 13. Lopez BJ, Valentine MT. The microtubule-associated protein eb1 affects both kinesin translocation and microtubule stiffness in vitro. Biophys J. 2013; 104(2): 144a[DOI]
  • 14. Nieznanska H, Dudek E, Zajkowski T, Szczesna E, Kasprzak AA, Nieznanski K. Prion protein impairs kinesin-driven transport. Biochem Biophys Res Commun. 2012; 425(4): 788-93[DOI][PubMed]
  • 15. Barlan K, Lu W, Gelfand VI. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1. Curr Biol. 2013; 23(4): 317-22[DOI][PubMed]
  • 16. Schechtman D, Mochly-Rosen D. Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene. 2001; 20(44): 6339-47[DOI][PubMed]
  • 17. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells. 2005; 10(2): 165-79[DOI][PubMed]
  • 18. Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN, et al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem. 2004; 279(48): 50176-80[DOI][PubMed]
  • 19. Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, et al. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem. 2007; 103(3): 1132-44[DOI][PubMed]
  • 20. Gilbert N, Bomar JM, Burmeister M, Moran JV. Characterization of a mutagenic B1 retrotransposon insertion in the jittery mouse. Hum Mutat. 2004; 24(1): 9-13[DOI][PubMed]
  • 21. Xiao J, Ledoux MS. Caytaxin deficiency causes generalized dystonia in rats. Brain Res Mol Brain Res. 2005; 141(2): 181-92[DOI][PubMed]
  • 22. Aoyama T, Hata S, Nakao T, Tanigawa Y, Oka C, Kawaichi M. Cayman ataxia protein caytaxin is transported by kinesin along neurites through binding to kinesin light chains. J Cell Sci. 2009; 122: 4177-85[DOI][PubMed]
  • 23. Matsuzaki F, Shirane M, Matsumoto M, Nakayama KI. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol Biol Cell. 2011; 22(23): 4602-20[DOI][PubMed]
  • 24. Shimamoto S, Takata M, Tokuda M, Oohira F, Tokumitsu H, Kobayashi R. Interactions of S100A2 and S100A6 with the tetratricopeptide repeat proteins, Hsp90/Hsp70-organizing protein and kinesin light chain. J Biol Chem. 2008; 283(42): 28246-58[DOI][PubMed]
  • 25. Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV. The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. J Biol Chem. 2002; 277(22): 19783-91[DOI][PubMed]
  • 26. Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM. Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol. 2003; 23(14): 4892-900[PubMed]
  • 27. Lalioti VS, Vergarajauregui S, Tsuchiya Y, Hernandez-Tiedra S, Sandoval IV. Daxx functions as a scaffold of a protein assembly constituted by GLUT4, JNK1 and KIF5B. J Cell Physiol. 2009; 218(2): 416-26[DOI][PubMed]
  • 28. Cabrera-Poch N, Sanchez-Ruiloba L, Rodriguez-Martinez M, Iglesias T. Lipid raft disruption triggers protein kinase C and Src-dependent protein kinase D activation and Kidins220 phosphorylation in neuronal cells. J Biol Chem. 2004; 279(27): 28592-602[DOI][PubMed]
  • 29. Iglesias T, Cabrera-Poch N, Mitchell MP, Naven TJ, Rozengurt E, Schiavo G. Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D. J Biol Chem. 2000; 275(51): 40048-56[DOI][PubMed]
  • 30. Kong H, Boulter J, Weber JL, Lai C, Chao MV. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J Neurosci. 2001; 21(1): 176-85[PubMed]
  • 31. Higuero AM, Sanchez-Ruiloba L, Doglio LE, Portillo F, Abad-Rodriguez J, Dotti CG, et al. Kidins220/ARMS modulates the activity of microtubule-regulating proteins and controls neuronal polarity and development. J Biol Chem. 2010; 285(2): 1343-57[DOI][PubMed]
  • 32. Tzivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem. 2002; 277(5): 3061-4[DOI][PubMed]
  • 33. Rong J, Li S, Sheng G, Wu M, Coblitz B, Li M, et al. 14-3-3 protein interacts with Huntingtin-associated protein 1 and regulates its trafficking. J Biol Chem. 2007; 282(7): 4748-56[DOI][PubMed]
  • 34. Toda H, Mochizuki H, Flores R3, Josowitz R, Krasieva TB, Lamorte VJ, et al. UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev. 2008; 22(23): 3292-307[DOI][PubMed]
  • 35. Cho KI, Yi H, Desai R, Hand AR, Haas AL, Ferreira PA. RANBP2 is an allosteric activator of the conventional kinesin-1 motor protein, KIF5B, in a minimal cell-free system. EMBO Rep. 2009; 10(5): 480-6[DOI][PubMed]
  • 36. Horiuchi D, Collins CA, Bhat P, Barkus RV, Diantonio A, Saxton WM. Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr Biol. 2007; 17(15): 1313-7[DOI][PubMed]
  • 37. Stagi M, Gorlovoy P, Larionov S, Takahashi K, Neumann H. Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J. 2006; 20(14): 2573-5[DOI][PubMed]
  • 38. Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol. 2001; 152(5): 959-70[PubMed]
  • 39. Kelkar N, Standen CL, Davis RJ. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol. 2005; 25(7): 2733-43[DOI][PubMed]
  • 40. Nguyen Q, Lee CM, Le A, Reddy EP. JLP associates with kinesin light chain 1 through a novel leucine zipper-like domain. J Biol Chem. 2005; 280(34): 30185-91[DOI][PubMed]
  • 41. Kamm C, Boston H, Hewett J, Wilbur J, Corey DP, Hanson PI, et al. The early onset dystonia protein torsinA interacts with kinesin light chain 1. J Biol Chem. 2004; 279(19): 19882-92[DOI][PubMed]
  • 42. McGuire JR, Rong J, Li SH, Li XJ. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem. 2006; 281(6): 3552-9[DOI][PubMed]
  • 43. Vagnoni A, Rodriguez L, Manser C, De Vos KJ, Miller CC. Phosphorylation of kinesin light chain 1 at serine 460 modulates binding and trafficking of calsyntenin-1. J Cell Sci. 2011; 124: 1032-42[DOI][PubMed]
  • 44. Satake T, Otsuki K, Banba Y, Suenaga J, Hirano H, Yamanaka Y, et al. The interaction of Kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to the JIP1-PTB domain. BMC Cell Biol. 2013; 14: 12[DOI][PubMed]
  • 45. Lee CM, Onesime D, Reddy CD, Dhanasekaran N, Reddy EP. JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc Natl Acad Sci U S A. 2002; 99(22): 14189-94[DOI][PubMed]
  • 46. Meimaridou E, Gooljar SB, Chapple JP. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol. 2009; 42(1): 1-9[DOI][PubMed]
  • 47. Makhnevych T, Houry WA. The control of spindle length by Hsp70 and Hsp110 molecular chaperones. FEBS Lett. 2013; 587(8): 1067-72[DOI][PubMed]
  • 48. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 2000; 101(2): 199-210[DOI][PubMed]
  • 49. Tsai MY, Morfini G, Szebenyi G, Brady ST. Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport. Mol Biol Cell. 2000; 11(6): 2161-73[PubMed]
  • 50. Song Y, Nagy M, Ni W, Tyagi NK, Fenton WA, Lopez-Giraldez F, et al. Molecular chaperone Hsp110 rescues a vesicle transport defect produced by an ALS-associated mutant SOD1 protein in squid axoplasm. Proc Natl Acad Sci U S A. 2013; 110(14): 5428-33[DOI][PubMed]
  • 51. Rahmati M, Gharakhanlou R, Movahedin M, Mowla SJ, Khazani A, Fouladvand M, et al. Treadmill training modifies KIF5B motor protein in the STZ-induced diabetic rat spinal cord and sciatic nerve. Arch Iran Med. 2015; 18(2): 94-101[PubMed]
  • 52. Silverman MA, Kaech S, Ramser EM, Lu X, Lasarev MR, Nagalla S, et al. Expression of kinesin superfamily genes in cultured hippocampal neurons. Cytoskeleton (Hoboken). 2010; 67(12): 784-95[DOI][PubMed]
  • 53. Takemura R, Nakata T, Okada Y, Yamazaki H, Zhang Z, Hirokawa N. mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. J Neurosci. 1996; 16(1): 31-5[PubMed]
  • 54. Kim T, Meyhofer E, Hasselbrink EF. Biomolecular motor-driven microtubule translocation in the presence of shear flow: modeling microtubule deflection due to shear. Biomed Microdevices. 2007; 9(4): 501-11[DOI][PubMed]
  • 55. Schief WR, Clark RH, Crevenna AH, Howard J. Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc Natl Acad Sci U S A. 2004; 101(5): 1183-8[DOI][PubMed]
  • 56. Schnitzer MJ, Visscher K, Block SM. Force production by single kinesin motors. Nat Cell Biol. 2000; 2(10): 718-23[DOI][PubMed]
  • 57. Yajima J, Alonso MC, Cross RA, Toyoshima YY. Direct long-term observation of kinesin processivity at low load. Curr Biol. 2002; 12(4): 301-6[PubMed]
  • 58. Sheetz MP, Yu H. Regulation of kinesin and cytoplasmic dynein-driven organelle motility. Seminars in Cell and Developmental Biology. 1996;
  • 59. Bohm KJ, Stracke R, Unger E. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biol Int. 2000; 24(6): 335-41[DOI][PubMed]
  • 60. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun. 1993; 194(2): 720-5[DOI][PubMed]
  • 61. Lopez J, Martinez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol. 2002; 221: 1-92[PubMed]
  • 62. Sackett DL, Ozbun L, Zudaire E, Wessner L, Chirgwin JM, Cuttitta F, et al. Intracellular proadrenomedullin-derived peptides decorate the microtubules and contribute to cytoskeleton function. Endocrinology. 2008; 149(6): 2888-98[DOI][PubMed]
  • 63. Larrayoz IM, Martinez A. Proadrenomedullin N-terminal 20 peptide increases kinesin’s velocity both in vitro and in vivo. Endocrinology. 2012; 153(4): 1734-42[DOI][PubMed]
  • 64. Rahmati M, Taherabadi SJ, Mehrabi M. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats. Iran Red Crescent Med J. 2015; 17(6)[DOI][PubMed]
  • 65. Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration. Int J Alzheimers Dis. 2011; 2011: 189728[DOI][PubMed]
  • 66. Sato-Yoshitake R, Yorifuji H, Inagaki M, Hirokawa N. The phosphorylation of kinesin regulates its binding to synaptic vesicles. J Biol Chem. 1992; 267(33): 23930-6[PubMed]
  • 67. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 2002; 21(3): 281-93[DOI][PubMed]
  • 68. Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci. 2006; 9(7): 907-16[DOI][PubMed]
  • 69. Gordon-Weeks PR. Microtubules and growth cone function. J Neurobiol. 2004; 58(1): 70-83[DOI][PubMed]
  • 70. Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci. 2010; 11(8): 539-51[DOI][PubMed]
  • 71. Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem. 2006; 281(35): 25457-65[DOI][PubMed]
  • 72. Araki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, et al. The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J. 2007; 26(6): 1475-86[DOI][PubMed]
  • 73. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998; 279(5350): 519-26[PubMed]
  • 74. Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST, Bloom GS. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989; 56(5): 867-78[PubMed]
  • 75. Aizawa H, Sekine Y, Takemura R, Zhang Z, Nangaku M, Hirokawa N. Kinesin family in murine central nervous system. J Cell Biol. 1992; 119(5): 1287-96[PubMed]
  • 76. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet. 2002; 71(5): 1189-94[DOI][PubMed]
  • 77. Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001; 105(5): 587-97[PubMed]
  • 78. Sabatier MJ, Redmon N, Schwartz G, English AW. Treadmill training promotes axon regeneration in injured peripheral nerves. Exp Neurol. 2008; 211(2): 489-93[DOI][PubMed]
  • 79. Gharakhanlou R, Chadan S, Gardiner P. Increased activity in the form of endurance training increases calcitonin gene-related peptide content in lumbar motoneuron cell bodies and in sciatic nerve in the rat. Neuroscience. 1999; 89(4): 1229-39[PubMed]