Effect of Caffeic Acid and Low-Power Laser Light Co-Exposure on Viability of Pseudomonas aeruginosa

Creative Commons License
Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Effect of Caffeic Acid and Low-Power Laser Light Co-Exposure on Viability of Pseudomonas aeruginosa


Nematolah Gheibi 1
,
Nader Divan Khosroshahi 1 , *
and
Marzieh Habibi 2

Authors Information

1 Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, IR Iran
2 Microbiology Department, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
Article information
  • Biotechnology and Health Sciences: August 01, 2015, 2 (3); e28198
  • Published Online: August 24, 2015
  • Article Type: Research Article
  • Received: February 23, 2015
  • Revised: June 29, 2015
  • Accepted: July 6, 2015
  • DOI: 10.17795/bhs-28198

To Cite: Gheibi N, Divan Khosroshahi N, Habibi M. Effect of Caffeic Acid and Low-Power Laser Light Co-Exposure on Viability of Pseudomonas aeruginosa, Biotech Health Sci. 2015 ;2(3):e28198. doi: 10.17795/bhs-28198.

Abstract
Copyright: Copyright © 0, Biotechnology and Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Goldberg JB. Pseudomonas: global bacteria. Trends Microbiol. 2000; 8(2): 55-7[PubMed]
  • 2. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406(6799): 959-64[DOI][PubMed]
  • 3. National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from October 1986–April 1998, Issued June 1998. American Journal of Infection Control. 1998; 26(5): 522-33
  • 4. Ramphal R, Pier GB. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect Immun. 1985; 47(1): 1-4[PubMed]
  • 5. Doig P, Todd T, Sastry PA, Lee KK, Hodges RS, Paranchych W, et al. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun. 1988; 56(6): 1641-6[PubMed]
  • 6. Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995; 15(3): 162-8[PubMed]
  • 7. Hoiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O, Kharazmi A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect. 2001; 3(1): 23-35[PubMed]
  • 8. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002; 416(6882): 740-3[DOI][PubMed]
  • 9. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002; 66(2): 86-92[PubMed]
  • 10. Berka RM, Vasil ML. Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization. J Bacteriol. 1982; 152(1): 239-45[PubMed]
  • 11. Komori Y, Nonogaki T, Nikai T. Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase). Toxicon. 2001; 39(9): 1327-32[PubMed]
  • 12. Ilhan A, Iraz M, Gurel A, Armutcu F, Akyol O. Caffeic acid phenethyl ester exerts a neuroprotective effect on CNS against pentylenetetrazol-induced seizures in mice. Neurochem Res. 2004; 29(12): 2287-92[PubMed]
  • 13. Hishikawa K, Nakaki T, Fujita T. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005; 25(2): 442-6[PubMed]
  • 14. Ida T, Okamoto R, Shimauchi C, Okubo T, Kuga A, Inoue M. Identification of aminoglycoside-modifying enzymes by susceptibility testing: epidemiology of methicillin-resistant Staphylococcus aureus in Japan. J Clin Microbiol. 2001; 39(9): 3115-21[PubMed]
  • 15. Nussbaum EL, Lilge L, Mazzulli T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg. 2002; 20(6): 325-33[DOI][PubMed]
  • 16. Komerik N, Wilson M, Poole S. The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochem Photobiol. 2000; 72(5): 676-80[PubMed]
  • 17. Nussbaum EL, Lilge L, Mazzulli T. Effects of low-level laser therapy (LLLT) of 810 nm upon in vitro growth of bacteria: relevance of irradiance and radiant exposure. J Clin Laser Med Surg. 2003; 21(5): 283-90[DOI][PubMed]
  • 18. Anwer AG, Husien AS. Combination Effect of Laser, Antibiotics and Different Temperature on Locally Isolated Pseudomonas aeruginosa. 2007; 6: 21-30
  • 19. Hay M, Ang MC, Gamelin D, Solomon EI, Antholine WE, Ralle M, et al. Spectroscopic Characterization of an Engineered Purple CuACenter in Azurin. Inorganic Chemistry. 1998; 37(2): 191-8[DOI]
  • 20. Kujawa J, Zavodnik IB, Lapshina A, Labieniec M, Bryszewska M. Cell survival, DNA, and protein damage in B14 cells under low-intensity near-infrared (810 nm) laser irradiation. Photomed Laser Surg. 2004; 22(6): 504-8[DOI][PubMed]
  • 21. Wilson M, Pratten J. Sensitization of Staphylococcus aureus to killing by low-power laser light. J Antimicrob Chemother. 1994; 33(3): 619-24[PubMed]
  • 22. Haas R, Dortbudak O, Mensdorff-Pouilly N, Mailath G. Elimination of bacteria on different implant surfaces through photosensitization and soft laser. An in vitro study. Clin Oral Implants Res. 1997; 8(4): 249-54[PubMed]
  • 23. Wilson M, Dobson J, Sarkar S. Sensitization of periodontopathogenic bacteria to killing by light from a low-power laser. Oral Microbiol Immunol. 1993; 8(3): 182-7[PubMed]
  • 24. Nussbaum EL, Biemann I, Mustard B. Comparison of ultrasound/ultraviolet-C and laser for treatment of pressure ulcers in patients with spinal cord injury. Phys Ther. 1994; 74(9): 812-23[PubMed]
  • 25. Rassam YZ. The Effect of laser light on virulence factors and antibiotic susceptibility of locally isolated Pseudomonas aeruginosa. Journal of Applied Sciences Research. 2010; 6(8): 1298-302
  • 26. Wilson M, Yianni C. Killing of methicillin-resistant Staphylococcus aureus by low-power laser light. J Med Microbiol. 1995; 42(1): 62-6[PubMed]
  • 27. Karu T. Primary and Secondary Mechanisms of Action of Monochromatic Visible and IR Radiation on Cell. J Photochem Photobiol B. 1993; 49(1): 99-108
  • 28. Kudugunti SK, Vad NM, Whiteside AJ, Naik BU, Yusuf MA, Srivenugopal KS, et al. Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines. Chem Biol Interact. 2010; 188(1): 1-14[DOI][PubMed]
  • 29. Kudugunti SK, Thorsheim H, Yousef MS, Guan L, Moridani MY. The metabolic bioactivation of caffeic acid phenethyl ester (CAPE) mediated by tyrosinase selectively inhibits glutathione S-transferase. Chem Biol Interact. 2011; 192(3): 243-56[DOI][PubMed]