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The Role of Calcium in Calprotectin Dimerization as a Cancer Biomarker
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Background: S100A8 and S100A9 as two subunits of heterodimeric calprotectin are identified mainly in leukocytes and are involved in 
inflammatory processes and several cancerous pathogens. This study was performed in order to evaluate the interaction of recombinant 
calprotectin subunits and to estimate calprotectin’s tertiary and secondary structures.
Objectives: The aim of this study was to investigate the effects of calcium in calprotectin dimerization as a cancer biomarker.
Materials and Methods: Heterodimeric calprotectin was formed with incubation of recombinant S100A8 and S100A9 subunits in the 
presence of Ca (1 mM), at 25˚C for 15 minutes. Tertiary and secondary structures of S100A8, S100A9 and their complex were investigated, 
using fluorescence and circular dichroism (CD) spectroscopy, respectively.
Results: Interaction of S100A8 and S100A9 in the presence of Ca2+ were revealed by decreasing the emission intensity of intrinsic 
fluorescence and increasing of the external fluorescence and also changes in the CD spectra of subunits after Ca2+ interactions.
Conclusions: The expression of recombinant calprotectin, as an effective protein, can help in diagnosis or treatment of inflammatory and 
cancer processes in the future. Furthermore, Ca2+ induced a partial change in secondary and tertiary structure of calprotectin subunits 
and this change is probably necessary for protein dimerization.
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1. Background
Calprotectin is a member of the S100 family of proteins, 

and is a marker of inflammation and a calcium and zinc-
binding protein. Expression of calprotectin has been 
reported mainly in neutrophils (30-60% in the cytosol), 
followed by monocytes and macrophages (mainly asso-
ciated with membranes), and to a lesser extent in other 
cells. Expression of S100A8 and S100A9 and hence calpro-
tectin are induced following recruitment of macrophages 
to inflammatory sites; calprotectin is not stored in tissue 
macrophages (1). The calprotectin structure is comprised 
of a hetero-dimer with two calcium-binding chains and 
two calcium-binding sites per chain. The heavy chain is a 
14 KD protein, also known as MRP14/S100A9/P14/L1H and 
the light chain is an 8 KD protein, also known as MRP8/
S100A8/L1L/P8 (1-3). The chains bind non-covalently in the 
presence of calcium. Other compounds namely, hetero- 
or homo-dimer of the two chains, tetrameric or more 
monomers per polymer chain have also been identified. 
Twenty-one S100 genes, including those for calprotectin, 
are clustered on human chromosome 1q21. Until now ho-
mo-dimer of S100 proteins including S100A8 and S100A9 
have been reported; the primer functional form was re-
ported to be heterodimeric consisting of antiparallel 
arrangement of S100A8/S100A9 known as calprotectin, 

which is induced in the presence of calcium. S100A8 and 
S100A9 are produced primarily in myeloid cells and cells 
triggered by inflammation of myeloid lineage with the 
exception of lymphocytes. S100A9 gene deletion leads to 
the loss of S100A8. Expression of S100A9 and S100A8 pro-
teins in phagocytes are associated with a set of actions 
in the innate immune system. The expression of these 
proteins occur during differentiation of macrophages 
and dendritic cells; both proteins can be simultaneously 
expressed in monocytes, endothelial cells, keratinocytes 
and epithelial cells by several mediators such as inter-
leukin (IL1)-alpha, IL1-beta, IL10, IL22, tumor necrosis fac-
tor (TNF) alpha and lipoteichoic acid (LPS) (4). Different 
roles have been reported for calprotectin, including; anti-
microbial, cytotoxicity, cytokine-like activity, anti-prolif-
eration, induction of apoptosis, chemotactic effects, leu-
kocyte-endothelium interaction, cell adhesion, immune 
regulation, inflammation and coagulation responses. 
Levels of calprotectin were found increase following in-
fections and inflammatory disease states (1, 3). Normally, 
calprotectin has been reported to be at a concentration of 
about 5 mg in plasma and 2 mg in stool, with a maximum 
of 10 mg per liter. S100A8 and S100A9 are soluble me-
diators, which are involved in cancer processes; they are 
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damage associated molecular patterns (DAMP), involved 
in tumor progression and malignancy. As DAMP ligands 
for cell surface receptors, they trigger signaling cascades 
mediating cellular responses to cytokine and chemokines 
(4). Calprotectin secretion occurs as a result of a patho-
logical attack when the leukocytes increase in tissues and 
this occurrence can be traced in the plasma, cerebrospi-
nal fluid, urine or feces (5). Calprotectin is produced as an 
early inflammatory response protein and has reported to 
be increased in many different human cancers (3). S100A9 
is reported to be involved in de- differentiation of cells by 
making changes in cytoskeleton in a calcium-dependent 
manner, and by signaling to normal cells, they can lead 
changes in neoplasms (6). Genomic changes in S100A8/
S100A9 loci in tumors with portions removed, double 
displacement and condensation have also been reported 
which may be associated with malignancy. The question is 
whether calprotectin or its subunits as a diagnostic mark-
er can predict disease progression or metastasis in some 
cancers? The aim of the present study was to investigate 
the interactions of calprotectin’s subunits with calcium. 
There are many evidences that indicate calprotectin is in-
creased in inflammatory diseases as well as many cancers 
including skin, breast, stomach, prostate and colon (2, 7).

2. Objectives
The present study aimed to evaluate the effects of cal-

cium on calprotectin subunits dimerization.

3. Materials and Methods

3.1. Materials
The rS100A8 and rS100A9 were obtained from a previous 

research. Anilinonaphthalene-8-sulfonic acid (ANS), was 
purchased from Sigma (Sigma-Aldrich, Germany). Calcium 
chloride (CaCl2), was purchased from Merck (Germany).

3.2. Complex Formation of r-S100A8/S100A9
For the preparation of r-S100A8/A9 complex, equal vol-

umes of r-S100A8 and r-S100A9 (1 µM), were incubated with 
calcium chloride (1 mM) in PBS dialysis buffer for at least 
15 minutes at 25˚C. Complex formation was investigated 
by fluorescence and circular dichroism (CD) spectroscopy.

3.3. Circular Dichroism Spectroscopy
The content of regular secondary structures of r-S100A8, 

r-S100A9 and r-S100A8/A9 complex were examined in the 
far ultraviolet (UV) region (190-260), which correspond 
to peptide bond absorption, using an AVIV model J810 
spectropolarimeter (JASCO) to give the content of regu-
lar secondary structure of proteins. Far UV-CD spectra 
of 0.04 mg/mL solution of proteins in PBS buffer (pH = 
6.5) were obtained with 1 mm path length quartz cell. The 
background was corrected against the buffer blank. The 
data were calculated as molar ellipticity (deg.cm2/dmol) 

assuming a mean residue number of 107 and average mo-
lecular weight of 25 KDa for S100A8/A9 complex using the 
CD deconvolution software. The molar ellipticity was de-
termined as [θ] = 100 × (MRW) × θobs/(cl), where θobs is the 
observed ellipticity in degrees at a given wavelength and 
c is the light path length in cm.

3.4. Intrinsic Fluorescence Spectroscopy
Intrinsic fluorescence of r-S100A8, r-S100A9 and r-

S100A8/A9 complex, after treatment with calcium chlo-
ride (1 mM), were studied using the Cary eclipse model 
100 bio spectrofluorometer equipped with a 150 W xenon 
lamp and a DR-3 data recorder. The excitation and emis-
sion slits were set at 5 and 5 nm, respectively. The intrinsic 
fluorescence was measured by exciting the protein solu-
tion with 1 cm path length cell at 280 nm in PBS dialysis 
buffer at pH = 6.5 and 25˚C and emission spectra were re-
corded at the wavelength range of 300-450 nm.

3.5. 8-Anilino-1-Naphthalene Sulfonate Fluores-
cence Spectroscopy

External fluorescence spectroscopy of r-S100A8/A9 com-
plex was performed with stock solution of 8-anilino-1-naph-
thalene sulfonate (ANS) (10 mM). The ANS fluorescence of 
r-S100A8/A9 complex was treated with calcium chloride. 
Excitation and emission slits were set at 5 and 5 nm, respec-
tively. Emission spectra were recorded from 400 to 650 nm 
with excitation at 380 nm in increments of 1nm.

4. Results

4.1. Fluorescence Spectroscopy of r-S100A8/A9 
Complex

Intrinsic fluorescence spectra showed changes in the 
tertiary structure of r-S100A8 and r-S100A9 subunits after 
complex formation (Figure 1). Calcium connection to the 
binding sites of S100A8 and S100A9, lead to the displace-
ment of the aromatic residue from hydrophobic environ-
ment to surface of proteins. Increasing emission spectra 
of ANS fluorescence showed a more hydrophobic struc-
ture for r-S100A8/A9 after treatment with Ca in compari-
son with only r-S100A8/A9 (Figure 2).

4.2. Circular Dichroism Assessments of r-S100A8/
A9 Complex

Circular dichroism is an ideal technique for monitoring 
the transitional switch between regular secondary struc-
tures in proteins, which can occur as a result of changes in 
experimental parameters such as treatment with Ca2+. The 
far UV-CD spectra characterize the secondary structures of 
proteins due to peptide bond absorption, thus changes 
in these spectra usually reflect major backbone changes 
in proteins. The far UV-CD spectra of r-S100A8/A9 complex 
indicate significant changes in the secondary structures, 
compared with rS100A8 and rS100A9 (Figure 3).
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Figure 1. Intrinsic Fluorescence Emission Spectra of r-S100A8, r-S100A9 
and r-S100A8/A9 (1 μM) After Treatment With Ca2+ (1 mM)
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Figure 2. 8-Anilino-1-Naphthalene Sulfonate External Fluorescence Emis-
sion Spectra of rS100A8/A9 (1μM) in the Absence and Presence of Ca2+ (1 
mM)
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Figure 3. Far Ultra Violet-Circular Dichroism Spectra (Molar Ellipticity 
[θ]) of r-S100A8, r-S100A9 and r-S100A8/A9 Complex (1 μM) After Treatment 
With Ca2+ (1 mM)

5. Discussion
In this study, the interaction of calprotectin mono-

mers in the presence of Ca2+ was investigated. The exis-
tence of the heterodimeric calprotectin was confirmed 
by decreasing intrinsic fluorescence, increasing ANS ex-
ternal fluorescence and change in CD spectra of rS100A8 
and A9 after their interaction with Ca2+. The role of cal-
cium has been demonstrated in calprotectin function 
(8). The same structural changes have been reported in 
the presence of excess Ca2+, which in turn increases the 
propensity of calprotectin to form protein aggregates 
(9). Spectroscopic techniques were used to verify pro-
tein–protein interaction, this required the induction of 
change in the spectroscopic parameters following com-
plex formation, i.e., change in fluorescence intensity, 
wavelength maximum or polarization, fluorescence 
resonance energy transfer efficiency, circular dichroism 
or nuclear magnetic resonance (NMR) chemical shift 
or intensity (10). High levels of S100A8 and S100A9 oc-
cur during inflammatory processes. Also, there is a close 
relationship between inflammation and carcinogen-
esis, while chronic inflammation can increase the risk 
of tumorigenesis. Even in the absence of inflammation 
as a causative factor, tumor formation can be due to 
genetic changes associated with immune cells trigger-
ing inflammation. S100A8/S100A9 secretion can also be 
provoked by tumor cell necrosis followed by hypoxia-in-
duced tumor growth. They can induce tumor formation 
as a result of the inflammatory process or elicit inflam-
matory response. They can mediate or prompt tumor 
formation and/or anti-tumor responses. As an anti-tu-
mor, S100A8/S100A9, act to induce cytotoxicity and apop-
tosis in tumor cells. Promotion of growth signals, block-
ing growth-inhibitors, apoptosis inhibition, potential 
uncontrolled proliferation, initiation of angiogenesis, 
tumor invasion and metastasis, are the essentials for 
malignant tumor (4). However, in spite of the anti-tu-
mor properties of S100A8/S100A9 and the possibility of 
their use as tools for cancer therapy (still not proven in 
vivo), this complex triggers a number of responses lead-
ing to tumor formation. The effective dose of S100A8/
S100A9 for tumor cell apoptosis is 20-25 micrograms 
per milliliter, whereas lower concentrations of S100A8/
S100A9 cause proliferation of tumor cells. Pro-apoptotic 
effects of S100A8/S100A9 ensue receptors for advanced 
glycation end products (RAGE), also, effects on growth 
promotion follow RAGE-induced signaling pathways by 
phosphorylation of mitogen-activated protein kinase 
(MAPK) and the activity of NF-KP (involved in cell signal-
ing pathways) (11-14). Toll-like receptors (TLR) are mem-
brane receptors associated with innate immune inflam-
matory response against pathogens. S100A8/S100A9 
boost inflammatory responses by TLR4 and recently, the 
important role of TLR in carcinogenesis has been iden-
tified (4). The molecular pathways mediated by S100A8/
S100A9 are potential targets for development of new 
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cancer treatments and detection of cancer biomarkers 
for early diagnosis and treatment processes (Table 1). In 
colon cancer, the abnormal increase in stool calprotec-
tin, which is stable against enzymatic degradation, may 
be used as a biomarker for screening patients with acute 
colorectal cancer from healthy individuals (15). Howev-
er, calprotectin lacks the required efficiency for screen-
ing patients with inflammatory bowel disease or polyps, 
and neoplasms. Furthermore, since calprotectin levels 
are increased to some extent in these subjects, stool cal-
protectin testing, could help isolate patients suspected 
of having colon cancer to be subjected to colonoscopy 
for determination of their health or disease progres-
sion (16). Also, levels of S100A9 expression in the stool 
can be a marker for diagnosis of metastasis and follow-
up treatment in colorectal cancer. Using a combination 
of stool blood and calprotectin can yield more accurate 
diagnosis of colorectal cancer (17). Overexpression of 
S100A8 and S100A9 occur in breast cancer, which are as-
sociated with poor cell differentiation and mitotic activ-
ity of the tumor cells respectively, and therefore, may be 
used as a marker for diagnosis, monitoring therapy as 
well as detecting metastasis (18). Also, they may be used 
as drug targets (19). S100A9 expression increases in pros-
tate cancer, which may be used to differentiate patients 
with benign tumors from those with malignant tumors. 
Moreover, it can be used as a marker for the onset of me-
tastasis (20, 21). Overexpression of calprotectin, S100A8 

and S100A9 in ovarian cancer, may be used as a diagnos-
tic marker to detect malignant tumors and in endome-
trial cancer this overexpression can act as a diagnostic 
marker, and monitor therapy or disease progression 
(22, 23). Overexpression of calprotectin and S100A8 have 
been reported in endometrial cancer, which can be used 
as a diagnostic marker and for monitoring therapy or 
disease progression (7). High levels of S100A8/S100A9 
expression may be used as a marker for the diagnosis of 
severe inflammation. S100A9 increases in thyroid can-
cer cells, and thus may be used as a marker for predict-
ing the disease process and perhaps can be one of the 
drug targets in the future (6). S100A8 and S100A9 may 
be used for the diagnosis of esophageal cancer (24) and 
gastric cancer and metastasis (25). Increased expression 
of S100A9 in lung cancer macrophages is a risk factor 
for the onset of metastasis and predicts weak recov-
ery for patients; this increased expression can also act 
as a diagnostic marker for liver and larynx cancer (26). 
Therefore, calprotectin or its subunits may be used as a 
cheap, non-invasive, readily available and easy marker. 
The structure and function of this protein and its sub-
units showed a narrow dependency to Ca2+. In this study 
the structural change of calprotectin and its subunits 
were confirmed by fluorescence and CD techniques. It 
seemed that Ca2+ induced a partial change in secondary 
and tertiary structure of subunits and was probably nec-
essary for protein dimerization.

Table 1.  S100A8/A9 and Calprotectin as Biomarkers in Different Cancers

Kinds of Cancer S100A8 S100A9 Calprotectin

Bladder in cancer cells - -

Blood in cancer cells - -

Breast in cancer cells in cancer cells -

Cervical in cancer cells - -

Colorectal - - in fecal

Endometrial in plasma - in plasma

Gastric in serum in serum -

Hepatocellular - in cancer cells -

Laryngeal - in cancer cells -

Lung - in cancer cells -

Oral in cancer cells - -

Ovarian in fluid ovarian cystic and 
serum

in fluid ovarian cystic and 
serum

in serum

Prostate in serum in serum -

Skin in cancer cells in cancer cells -

Thyroid - in cancer cells -
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